
Web Application for Aqualab 
Sensor Monitoring and 
Analysis - Milestone 3

Ruth Garcia, Haley Hamilton, Greg Thompson



Milestone 3 Overview:
Implement, test, and demo Accessing Recorded Data
● Ensure parts of the system have access to the data stored in the database
● CRUD functions

Implement, test, and demo Displaying the Data
● Ensure frontend can read and display data from backend
● React Modules

Implement, test, and demo Data Analysis Tools
● Tool allows users to filter through and display desired data in a graph 

Implement, test, and demo Data Checking and Notifications
● System checks data to ensure its in the desired range
● System sends notifications if out of range 



Milestone 3 Progress Matrix:
Task Completion Greg Haley Ruth To do

Implement, test, and demo 
Displaying the data

70% 0% 40% 60% Test functionality with 
sensors and refine data 
handling.

Implement, test, and demo Data 
Analysis Tools

70% 30% 40% 30% Test functionality with 
sensors and refine data 
handling.

Implement, test, and demo 
Accessing Recorded Data

50% 20% 60% 20% Develop the move/delete 
data functionality.

Implement, test, and demo Data 
Checking and Notifications

70% 100% 0% 0% Test functionality with 
sensors and additional 
development and testing with 
notification system..



New Backend Multithreading:
So program synchronisation is complicated. 

The technical details here are beyond the scope of this presentation, but the tasks 
performed by threads and the methods of sharing data between threads have been 
reworked. This will mitigate potential thread starvations and eliminate data 
corruption issues.



User Notifications:
Sensor APIs now check whether received data is in expected ranges. 
The functionality for an authorized user to modify these ranges has been developed 
and implemented. 

System currently prints to console to avoid spamming. Once real datasets are 
available for testing, we will discuss with the client the exact specifications of 
notification messages. (what information must be sent and how often messages 
should be sent)



Accessing Recorded Data
● Frontend to Backend Connection - 

○ CRUD functions were made in the Flask app
○ allows different react modules to read data from the backend

@self.app.route("/current_sensor_data/", methods=["GET"])
- allows graphs on home page to read and display data

@self.app.route("/config_sensors", methods=["PATCH"])
- allows home page to update the sensor configuration

@self.app.route("/create_user", methods=["POST"])
- allows user page to create new users



Data Analysis Tools:
● The Goal: Users input data filters and a graph of the desired data is 

displayed. 
● Current progress:

○ User can select filters and apply them, these filters are sent to the backend and 
query the data

○ We don't have properly simulated data, so right now this function is not sending 
back data to display

○ Right now, a real time react chart is displayed instead, showing we know how to 
use data to display a chart (same for the home page)

○ The tank tabs DO communicate with the backend to receive updating data. It gets a 
number every couple of seconds and adds it as a point on the graph



Displaying the Data and User Interface:
● Consists of Flask functions and React modules

○ Allows the frontend and backend to communicate and React 
properly displays all needed data and forms

● UI styling is a work in progress
○ Integration of our existing UI styling and our evolving React 

modules was difficult, trying to say true to mockups.
● Full Implementation Awaiting Sensors: 

○ Sensors are ordered and will be here for M4 (fingers crossed)
○ Right now we are displaying dummy data, code and 

measurements will be tailed once we have proper example data



Frontend Backend Connection (Demo) - User:



Frontend Backend Connection (Demo) - Settings:



Website Functionality Demo:

One Moment Please
(grabbing flash drive)



Milestone 4 Progress Matrix:
Task Greg Haley Ruth

Testing and Refactoring System with 
Sensors and Data

40% 40% 20%

Implement, test, and demo Move/Delete 
Data from Database

20% 40% 40%

Implement, test, and demo Data Backup in 
Cloud Storage

40% 20% 40%

Implement, test, and demo User Role 
Logic

30% 30% 40%



Questions?


